Монгол Бодлогын Сан
Эх хэлээрээ суралцаж, эх хэлээрээ мэдлэгээ түгээе.
Уламжлалын тодорхойлолт
Бодолт
Заавар: Уламжлалын тодорхойлолт ашигла.
Бодолт: \lim\limits_{x\to\pi}\dfrac{\sin x}{x-\pi}=\lim\limits_{x\to\pi}\dfrac{\sin x-\sin\pi}{x-\pi}=(\sin x)^\prime\big|_{x=\pi}=\cos\pi=-1
Эрдэнэ багшийн бодолт [I гайхамшигт хязгаар ашигласан]:
a=x-\pi орлуулга хийвэл a\to 0 тул \lim\limits_{x\to\pi}\dfrac{\sin x}{x-\pi}=\lim\limits_{a\to 0}\dfrac{\sin(\pi-a)}{a}=-\lim\limits_{a\to 0}\dfrac{\sin a}{a}=-1
Эрдэнэ багшийн бодолт [I гайхамшигт хязгаар ашигласан]:
a=x-\pi орлуулга хийвэл a\to 0 тул \lim\limits_{x\to\pi}\dfrac{\sin x}{x-\pi}=\lim\limits_{a\to 0}\dfrac{\sin(\pi-a)}{a}=-\lim\limits_{a\to 0}\dfrac{\sin a}{a}=-1
Сорилго
Энэ бодлого ямар нэг сорилгод ороогүй.