Монгол Бодлогын Сан
Эх хэлээрээ суралцаж, эх хэлээрээ мэдлэгээ түгээе.
Бодлого №1334
$\log^2_{\sqrt[5]5}\sqrt5-\log_{\sqrt[3]5}5\sqrt5+\log_{\sqrt3+1}(4+2\sqrt3) $ илэрхийллийн утгыг тооцоол.
Бодлогын төрөл: Уламжлалт
Бодлогыг оруулсан: Балхүүгийн Батбаясгалан
Бодолт
Заавар:
Бодолт: \begin{align*}
\text{Илэрх.}&=\log^2_{\sqrt[5]5}\sqrt5-\log_{\sqrt[3]5}5\sqrt5+\log_{\sqrt3+1}(4+2\sqrt3)\\
&=\big(\log_{5^{\frac15}}5^{\frac12}\big)^2-\log_{5^{\frac13}}5^{\frac32}+\log_{\sqrt3+1}(\sqrt3+1)^2\\
&=\left(\dfrac{\frac12}{\frac15}\log_55\right)^2-\dfrac{\frac32}{\frac13}\log_55+2\\
&=\dfrac{25}{4}-\dfrac{9}{2}+2=\dfrac{25-18+8}{4}=\dfrac{15}{4}=3.75
\end{align*}
Сорилго
Илтгэгч ба логарифм илэрхийлэл-3
Илтгэгч ба логарифм илэрхийлэл 2
Илтгэгч ба логарифм илэрхийлэл 2
Илтгэгч ба логарифм илэрхийлэл-2
алгебр
Илтгэгч ба логарифм илэрхийлэл, зуны сургалт
Илтгэгч ба логарифм илэрхийлэл, зуны сургалт тестийн хуулбар
Илтгэгч ба логарифм илэрхийлэл, зуны сургалт тестийн хуулбар тестийн хуулбар
Илтгэгч ба логарифм илэрхийлэл, зуны сургалт тестийн хуулбар
Тоо тоолол
02.1. Илтгэгч ба логарифм илэрхийлэл, зуны сургалт 2023