Монгол Бодлогын Сан

Эх хэлээрээ суралцаж, эх хэлээрээ мэдлэгээ түгээе.

Бодлого №14354

$\begin{pmatrix} \phantom{-}1 & \phantom{-}0 & 0\\ -2 & \phantom{-}1 & 0\\ \phantom{-}0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{pmatrix}$

A. $\begin{pmatrix} 1 & 2 & 3\\ 2 & 1 & 0\\ 3 & 3 & 3 \end{pmatrix}$   B. $\begin{pmatrix} 1 & \phantom{-}0 & 1\\ 4 & -3 & 1\\ 7 & -6 & 1 \end{pmatrix}$   C. $\begin{pmatrix} 1 & 2 & 3\\ 3 & 3 & 3\\ 3 & 3 & 3 \end{pmatrix}$   D. $\begin{pmatrix} 1 & 2 & 3\\ 3 & 3 & 3 \\ 2 & 1 & 0\end{pmatrix}$   E. $\begin{pmatrix} 1 & 1 & \phantom{-}0\\ 4 & 1 & -3\\ 7 & 1 & -6\end{pmatrix}$  

Бодлогын төрөл: Сонгох
Амжилтын хувь: 78.21%
Бодлогыг оруулсан: Балхүүгийн Батбаясгалан

Бодолт

Заавар: $\begin{pmatrix} \phantom{-}1 & \phantom{-}0 & 0\\ -2 & \phantom{-}1 & 0\\ \phantom{-}0 & -1 & 1 \end{pmatrix}$ матрицаар аливаа $A$ матрицыг урд талаас нь үржих нь $A$ матрицын 2-р мөрөөс 1-р мөрийг 2 дахин, 3-р мөрөөс 2-р мөрийг 1 дахин хассантай тэнцүү болохыг ашигла.
Бодолт: $$\begin{pmatrix} \phantom{-}1 & \phantom{-}0 & 0\\ -2 & \phantom{-}1 & 0\\ \phantom{-}0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{pmatrix}=\begin{pmatrix} 1 & 2 & 3\\ 4-2\cdot 1 & 5-2\cdot 2 & 6-2\cdot 3\\ 7-1\cdot 4 & 8-1\cdot 5 & 9-1\cdot 6 \end{pmatrix}=\begin{pmatrix} 1 & 2 & 3\\ 2 & 1 & 0\\ 3 & 3 & 3 \end{pmatrix}$$

Сорилго

Матриц 1  Тест 12 в 03.19  Матриц 1 тестийн хуулбар  алгебр  2024-6-17 

Түлхүүр үгс