Монгол Бодлогын Сан
Эх хэлээрээ суралцаж, эх хэлээрээ мэдлэгээ түгээе.
Бодлого №431
{(x+y)2=12x2+y2=2(a+1) систем тэгшитгэл яг хоёр шийдтэй байх a параметрийн утгуудыг ол.
Бодлогын төрөл: Уламжлалт
Бодлогыг оруулсан: Балхүүгийн Батбаясгалан
Бодолт
Заавар:
Бодолт: (x+y)2=12 тэгшитгэлийн шийдийн олонлог нь хавтгайд x+y=2√3; x+y=−2√3 шулуунуудаас тогтоно. a>−1 үед x2+y2=2(a+1) нь координатын эх дээр төвтэй √2(a+1) радиустай тойрог дүрсэлнэ.
Систем тэгшитгэл яг 2 шийдтэй байхын тулд эдгээр шулуунууд нь тойргийг шүргэнэ. Эдгээр шүргэлтийн цэгүүд нь (x;x) координаттай байх тул
{(x+x)2=12x2+x2=2(a+1) буюу {2x2=62x2=2(a+1)
эндээс 2(a+1)=6⇒a=2 болно.

Сорилго
Энэ бодлого ямар нэг сорилгод ороогүй.