Монгол Бодлогын Сан
Эх хэлээрээ суралцаж, эх хэлээрээ мэдлэгээ түгээе.
Квадрат тэгшитгэл
x2−(√2+1)x+√2=0 тэгшитгэлийг бод.
A. Бодит шийдгүй
B. x1=−1, x2=−√2
C. x1=1, x2=√2
D. x1=x2=1+√2
E. x1=1, x2=1/√2
Бодлогын төрөл: Сонгох
Амжилтын хувь: 71.82%
Бодлогыг оруулсан: Балхүүгийн Батбаясгалан
Бодолт
Заавар: Виетийн теорем ашиглан хариунаас бод.
Бодолт: x1=1 шийд болохыг шалгаад Виетийн теорем ашиглан x2=√2 гэж бодох боломжтой. Тэгшитгэлийн хялбар шийдийг тааж олох нь хугацаа хэмнэх боломж олгодог юм.
Түүнчлэн x1,2=√2+1±√(√2+1)2−4√22=√2+1±√(√2−1)22= =√2+1±|√2−1|2=√2+1±(√2−1)2 гээд квадрат тэгшитгэл бодох томьёо ашиглаад бодсон ч болно. Энэ тохиолдолд x1=√2+1−√2+12=1, x2=√2+1+√2−12=√2.
Түүнчлэн x1,2=√2+1±√(√2+1)2−4√22=√2+1±√(√2−1)22= =√2+1±|√2−1|2=√2+1±(√2−1)2 гээд квадрат тэгшитгэл бодох томьёо ашиглаад бодсон ч болно. Энэ тохиолдолд x1=√2+1−√2+12=1, x2=√2+1+√2−12=√2.
Сорилго
ЭЕШ математик №03
Алгебрийн илэрхийлэл 1
ЭЕШ-ийн сорилго B-хувилбар
2020-03-27 сорил
Oyukaa12
ДАВТЛАГА №2, Алгебрын илэрхийлэл, Шугаман тэгшитгэл-тэнцэтгэл биш, Квадрат тэгшитгэл, Математикийн багш Х.Тойбазар
ДАВТЛАГА №2, Алгебрын илэрхийлэл, Шугаман тэгшитгэл-тэнцэтгэл биш, Квадрат тэгшитгэл, Математикийн багш Х.Тойбазар тестийн хуулбар
ДАВТЛАГА №2, Алгебрын илэрхийлэл, Шугаман тэгшитгэл-тэнцэтгэл биш, Квадрат тэгшитгэл, Математикийн багш Х.Тойбазар тестийн хуулбар тестийн хуулбар
Бие даалт 7
"Цэгц билиг " сорилго
Квадрат тэгшитгэл Виетийн теорем
Алгебрийн тэгшитгэл - Квадрат тэгшитгэл
ВИЕТИЙН ТЕОРЕМ
Квадрат тэгшитгэл, квадрат функц, түүний хэрэглээ
Алгебрийн илэрхийлэл 1 тестийн хуулбар
Виетийн теорем
Алгебрийн тэгшитгэл 2
Квадрат тэгшитгэл
алгебр
алгебр
Квадрат Тэгшитгэл, Тэнцэтгэл биш 2022-2023 хичээлийн жил
квадрат тэгшитгэл, тэнцэтгэл биш