Монгол Бодлогын Сан
Эх хэлээрээ суралцаж, эх хэлээрээ мэдлэгээ түгээе.
Тэгшитгэлээр өгөгдсөн тойргийн талбай
$x^2+y^2-12x+10y+52=0$ тэгшитгэлээр өгсөн тойргийн талбайг ол.
A. $16\pi$
B. $9\pi$
C. $25\pi$
D. $12\pi$
E. $4\pi$
Бодлогын төрөл: Сонгох
Амжилтын хувь: 61.61%
Бодлогыг оруулсан: Балхүүгийн Батбаясгалан
Бодолт
Заавар: $x^2+y^2-12x+10y+52=(x-6)^2+(y+5)^2+52-6^2-5^2=0$.
Бодолт: $$x^2+y^2-12x+10y+52=(x-6)^2+(y+5)^2+52-6^2-5^2=0$$ тул $$(x-6)^2+(y+5)^2=3^2$$ Иймд $r=3$.
$S=\pi\cdot r^2$ тул $S=\pi\cdot 3^2=9\pi$.
$S=\pi\cdot r^2$ тул $S=\pi\cdot 3^2=9\pi$.