Монгол Бодлогын Сан
Эх хэлээрээ суралцаж, эх хэлээрээ мэдлэгээ түгээе.
Иррационал тэгшитгэл ба тэнцэтгэл биш
f(x)=√2x+3 бол
- f(x)=5 тэгшитгэлийн шийд нь x=ab,
- f(x)>−1 тэнцэтгэл бишийн шийд нь [−cd;+∞[ завсрын бүх цэг юм.
- f(x)>3 тэнцэтгэл бишийн шийд нь ]e;+∞[ завсрын бүх цэг болно.
ab = 11
cd = 32
e = 3
Бодлогын төрөл: Нөхөх
Амжилтын хувь: 45.10%
Бодлогыг оруулсан: Балхүүгийн Батбаясгалан
Бодолт
Заавар:
- √f(x)=g(x)⇔{f(x)=g2(x)g(x)≥0
- √f(x)>g(x)⇔[f(x)>g2(x){f(x)≥0g(x)<0
Бодолт:
- √2x+3=5⇔2x+3=52 тул x=11.
- √2x+3>−1⇔2x+3≥0 тул тэнцэтгэл бишийн шийд нь [−32;+∞[ завсрын бүх цэг юм.
- √2x+3>3⇔2x+3>32 тул тэнцэтгэл бишийн шийд нь ]3;+∞[ завсрын бүх цэг болно.
Сорилго
2016-09-19
2020-03-20 сорил
сорил тест
Алгебрийн тэгшитгэл, тэнцэтгэл биш
алгебр
алгебр
алгебр
алгебр